高震区某细粒尾矿坝动力时程抗震分析-矿业114网 
首页 >> 文献频道 >> 矿业论文 >> 正文
高震区某细粒尾矿坝动力时程抗震分析
2019-02-18
为防止尾矿坝发生液化现象而危及整个尾矿坝的稳定性,以西南高地震区某细粒尾 矿坝为例,从细粒尾砂的动剪切模量和阻尼比以及相关试验参数为基础、按照近似场地人工拟合地 震波为动力输入荷载、以等效循环剪应力与抗液化剪力比较作为液化判别的依据、借助时程应力有 限元法为手段,详细分析了高震区细粒尾矿库的液化区域以及时程动稳定性。分析结果表明:液化 区域主要集中在库尾水位以下,并随着孔隙水压力的积累,液化区域逐渐向深部和堆积子坝方向发 展;时程动稳定性系数与拟静力法相比,稳定性系数偏小,其中仅一条地震波作用与拟静力法计算 的稳定性系数基本相当,从而亦说明动力时程法在分析高震区尾矿坝动稳定性时,较符合实际地震...
Serial No. 597 January. 2019 现ꢀ 代ꢀ 矿ꢀ 业 MODERN MINING 总第 597期 2019 年 1 月第 1 期 高震区某细粒尾矿坝动力时程抗震分析 1 李ꢀ 静 ꢀ 张ꢀ 默 2 ( 1. 安徽政越市政园林建设有限公司;2. 中钢集团马鞍山矿山研究院有限公司) ꢀ ꢀ 摘ꢀ 要ꢀ 为防止尾矿坝发生液化现象而危及整个尾矿坝的稳定性,以西南高地震区某细粒尾 矿坝为例,从细粒尾砂的动剪切模量和阻尼比以及相关试验参数为基础、按照近似场地人工拟合地 震波为动力输入荷载、以等效循环剪应力与抗液化剪力比较作为液化判别的依据、借助时程应力有 限元法为手段,详细分析了高震区细粒尾矿库的液化区域以及时程动稳定性。 分析结果表明:液化 区域主要集中在库尾水位以下,并随着孔隙水压力的积累,液化区域逐渐向深部和堆积子坝方向发 展;时程动稳定性系数与拟静力法相比,稳定性系数偏小,其中仅一条地震波作用与拟静力法计算 的稳定性系数基本相当,从而亦说明动力时程法在分析高震区尾矿坝动稳定性时,较符合实际地震 动力作用过程,并优于传统的拟静力法。 关键词ꢀ 细粒尾矿ꢀ 高震区ꢀ 动力时程法ꢀ 液化区域ꢀ 动力稳定性 DOI:10. 3969 / j. issn. 1674-6082. 2019. 01. 010 Dynamic Time History Seismic Analysis on a Fine Tailings Dam in High Earthquake Region 1 2 Li Jing ꢀ Zhang Mo 1. Anhui Zhengyue Municipal Garden Construction Co. ,Ltd. ; . Sinosteel Maanshan Institute of Mining Research Co. ,Ltd. ) ( 2 Abstractꢀ In order to prevent liquefaction,which is dangerous to the stability of the tailings dam. Based on southwest high earthquake a fine grained tailings dam as an example, the fine grain of backfill- ing dynamic shear modulus and damping ratio, and related test parameters for foundation, according to the approximate artificial fitting of seismic wave field as the power input load, equivalent cyclic shear stress compared with anti liquefaction shear as the basis of liquefaction discrimination, with the help of the schedule stress by means of finite element method, the detailed analysis of the high earthquake lique- faction of fine grained tailings area and dynamic stability. The results show that the liquefaction area is mainly concentrated under the water level at the end of the reservoir. In dynamic stability coefficient is compared with the pseudo-static method, stability coefficient is small, only a seismic wave action and pseudo-static method to calculate the stability coefficient of basic quite, which also shows that dynamic time history method in analysis of tailings dam in high earthquake dynamic stability, more in line with the actual seismic dynamic process, and superior to the traditional pseudo-static method. Keywordsꢀ Fine grained tailings,High earthquake region,Dynamic time history method,Liquefied area,Dynamic stability ꢀ ꢀ 尾矿库一般以土石坝作为初期坝,后期多采用 尾矿粒度逐渐减小。 因此排入尾矿库内的尾矿粒度 越来越细,并且排尾速度和排入量也不断增加。 其 中细粒尾砂粒径小于 0. 074 mm 的颗粒质量超过总 尾砂作为堆积子坝,然后在库内贮存尾矿。 随着选 矿工艺的进步和低品位矿石的开采,选矿厂分选的 [ 1] 质量的 85% ,一般渗透系数很低,沉积缓慢,导致 水力充填的细粒尾矿在库内难以排水固结,使得库 内浸润线较高,库内滩面坡度通常小于 1% ,滩面出 ꢀ ꢀ 李ꢀ 静(1990—),女,助理工程师, 231200 安徽省合肥市肥西 县上派镇人民西路泰来尚品 1 号。 4 4 ꢀ ꢀ 李ꢀ 静ꢀ 张ꢀ 默:高震区某细粒尾矿坝动力时程抗震分析ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 2019 年 1 月第 1 期 现“千层饼”现象。 对于处在我国西南高地震烈度区的细粒尾矿 效循环次数对应地震烈度下的砂土抗液化剪应力比 (τd / σ0 )N 。 室内动三轴试验测定的结果和现场存 在一定的差异,需要进行修正,修正后的地面以下 h 深度处抗液化剪应力按式(4)计算。 坝,在遇到强地震动力作用时,细粒尾矿坝极易液 化,尾矿坝的抗震稳定性降低。 为减少高震区建设 的尾矿坝震后失稳,而造成的生命财产损失和环境 破坏,对位于 8 度及以上地震烈度的三等及以上尾 矿坝,应进行动力抗震计算,抗震计算包括液化分析 和地震稳定性分析等,抗震稳定性除应采用拟静力 σ d τL = Cr γ′h ( )N, (4) 2σ′ 为应力校正系数,本次取 0. 56;γ′为覆盖层 r 0 式中,C 有效重度;N 为等效循环次数,见表 2 取值。 表 2ꢀ 等效循环次数与震级的关系 [ 1] 法外,尚应采用时程法进行分析 。 1 ꢀ 细粒尾矿的动力参数 不同烈度的地震力,造成的场地剪应变幅值不 震级 6. 5 8 7. 0 12 7. 5 20 8. 0 30 N 同,随着剪应变幅值的增加,细粒尾砂的剪切模量也 有不同程度的降低。 由于细粒尾砂阻尼比的作用, 部分地震动能转化为其他能量而衰减,动剪切模量 ꢀ ꢀ 对于液化可能性的评判,通过比较 τL≤τe ,则液 化;τL≥τe ,则不液化。 3 ꢀ 细粒尾矿坝时程动稳定性 ( G)和阻尼比(D)是地震时程分析的主要参数。 通 [ 4] 时程动稳定性采用应力有限元法 ,计算得到 常采用式(1)、式(2)计算。 的坝体的静应力和地震作用下每一瞬时的动应力的 基础上,再引入圆弧滑动面的概念,把滑动面划分若 干小弧段 Δli ,小弧段 Δli 上的应力用弧段中点的应 力代表,其值可以按有限元法应力分析的结果,根据 弧段中点所在单元的应力确定,表示为 σxi 、σzi 、σxzi 。 如果小弧段 Δli 与水平线的倾角为 θi ,则作用在弧 段上的法向应力和剪应力分别按式(5 ~ 6)计算。 1 Gd = 1 + γd / γr Gmax , (1) (2) γd / γr D = Dmax 1 + γd / γr , 式中,Gmax 为最大剪切模量,MPa;Dmax 为最大阻尼 比;γd 、γr 分别为动应变和剪应变幅。 2 ꢀ 细粒尾矿的液化判别 液化判别采用当前广泛应用的 Seed 简化法,即 σni = 21 (σ + σ + σ + σ ) s xi d xi s zi d zi [ 2] 抗液化剪应力法或称循环应力法 。 把地震剪应 力随时间的不规则变化转化为一个有一定等效循环 次数的均匀剪应力。 任意深度 h 处的均匀等效地震 剪应力按式(3)计算。 s xi d xi s zi d zi - 21 (σ + σ + σ + σ )cos2θi s xzi d xzi + τ + τ sin2θi , (5) s d τi = - (τ + τ )cos2θi xzi xzi τe = 0. 65γh α MSF , max -1 (3) 21 [(σ + σ ) - (σ + σ )]sin2θi , (6) s xi d xi s zi d zi - g ꢁ 1 式中, αmax 为水平地震影响系数最大值; MSF 震级标定系数,见表 1 取值。 为 s x d 式中,σ 为单元的静水平应力,kPa;σx 为单元的动 s x d 水平应力,kPa;σ 为单元的静竖向应力,kPa;σz 为 - 1 表 1ꢀ 震级标定系数 MSF s 单元的动竖向应力,kPa;τ 为单元的静剪应力, xz 震级 6. 5 7. 0 7. 5 1. 0 8. 0 d kPa;τ 为单元的动剪应力,kPa;θi 为 i 单元滑动面 ꢁ 1 xz MSF 1. 44 ~ 1. 0 1. 19 ~ 1. 25 0. 81 切向与水平向的夹角,(°)。 ꢀ ꢀ 砂土的抗液化剪应力通常采用动三轴来测 [3] 。 用动三轴测定抗液化应力时,首先在试样上 将滑动面上所有小弧段的剪应力和抗剪强度分 定 n 施加一定的均等固结应力 σ1c = σ3c = σ′0 ,然后保持 围压不变,在轴向上加一个往返作用的动应力±σd , 做出破坏开始时的应力循环数 NL。 对同样试样,改 变应力 σd ,即可测出多组对应于不同 σd 和 NL,按 τd = σd / 2 计算动剪应力,做出动剪应力比 τd = σ0 = σ/ (2σ′0 )与 lgNL 的关系曲线。 最后在曲线上直接 查取相应循环次数时动剪应力的比值,即为相应等 别求出后,累加求得沿着滑动面的总剪切力∑τi Δli n 和抗剪力∑τfi 。 可在地震中每一时刻对坝体进行动 力稳定计算,其安全系数按式(7)计算。 n n Fs = i∑= 1(cid + σni tanϕid )Δli / i∑= 1τi Δli , 式中,cid 为第 i 单元土体的动凝聚力,kPa;ϕid 为第 i 单元土体的动内摩擦角,(°);Δl 为第 i 单元滑弧面 (7) i 4 5 总第 597 期 现代矿业 2019 年 1 月第 1 期 的长度,m;σni 为第 i 单元滑弧面上法向应力(静应 力和动应力的叠加值),kPa;τi 为第 i 单元滑弧面上 切向应力(静应力和动应力的叠加值),kPa。 石反压平台。 上游子坝为尾矿堆筑,每级子坝高度 为 2 m,顶宽 2 m,子坝上游坡度 1 ∶ 2, 下游坡度 为 1 ∶4. 5,堆积坝外边坡每隔 10 m 高差设置一级 5 m 宽平台,堆积坝平均坡比 1 ∶5。 尾矿坝设计最终 坝顶标高 1 620 m,总坝高 76 m,尾矿库的总库容 在地震过程中,动力时程法计算的瞬时安全系 数有可能小于静安全系数最小值,动安全系数甚至 小于 1. 0。 但是由于动加速度的方向不断变化,动 安全系数小于 1. 0 持续的时间较短,其数值小于 3 为 4 285. 74 万 m ,尾矿库等别为三等库。 4 . 2ꢀ 试验参数 1)剪切模量和阻尼比参数。 通过对现场取样 ( 1 . 0 不一定表示坝坡失稳,仅表示坝坡在一定时段 的尾细砂,在室内共振柱试验,得到动剪切模量和阻 尼比与剪应变幅值的关系如表 3 所列,拟合关系图 如图 1 所示。 初期坝堆石料及反压平台废石料强度 相对较高,坝基岩土主要为卵石层、粉质黏土和黏土 岩材料,均可不考虑液化可能,为简化计算,阻尼比 和动剪切模量均按常数考虑,如表 4 所列。 进入屈服状态出现滑移。 由于地震瞬时最小安全系 数不能作为判定坝坡稳定的依据,目前已经提出了 多种计算地震动安全系数的方法,包括静力修正法、 [ 5] 时段平均法等 。 静力修正法是采用静力安全系 数修正动安全系数,其计算表达式按式(8)计算。 Fd = Fs - 0. 65(Fs - Fd0 ) , (8) 表 3ꢀ 细粒尾砂的 G/ Gmax 和 D 与剪应变对应值 式中,Fd 为动安全系数;Fs 为静安全系数;Fd0 为地 震瞬时最小安全系数。 G / Gmax 尾细砂 尾粉砂 D/ % 尾细砂 尾粉砂 剪切应变 剪切应变 4 ꢀ 工程实例分析 ꢁ 5 4. 5×10ꢁ6 2×10ꢁ5 1 ×10 ×10 1. 000 0. 986 0. 943 0. 914 0. 712 0. 427 0. 224 0. 057 0. 019 0. 008 0. 052 0. 074 0. 081 0. 092 0. 161 0. 363 0. 481 0. 534 0. 585 0. 623 4 . 1ꢀ 工程概况 ꢁ 5 3 0. 978 0. 951 0. 788 0. 514 0. 273 0. 108 0. 041 0013 0. 055 0. 065 0. 150 0. 300 0. 350 0. 380 0. 420 0. 450 西南山区某尾矿库位于沪定—米易台的米易穹 ×10ꢁ4 8×10ꢁ5 1 ꢁ ꢁ ꢁ ꢁ ꢁ 4 3 3 2 2 4. 5×10ꢁ4 2×10ꢁ3 7×10ꢁ3 1×10ꢁ2 断束和冕宁台穹 2 个四级构造单元之间。 库区处于 度 地 区, 地 震 峰 值 加 速 度 为 0. 3g, 特 征 周 3×10 1 ×10 3×10 8 [ 6] 期 0. 45 s 。 矿库初期坝为堆石透水坝, 坝顶标 高 1 600 m,上游坡比 1 ∶1. 8,下游坡比 1 ∶2,并在初 期坝下游 1 570 m 及 1 555 m 标高分别设 30 m 宽 的废 1 3 1 ×10 ×10 2×10ꢁ2 ×10ꢁ1 5×10ꢁ2 图 1ꢀ 细粒尾砂剪切模量和阻尼比与剪应变关系 ꢀ ꢀ (2)地震波时程加速度曲线。 在针对进行专门 ꢀ ꢀ 动力计算中,地震波曲线至少选取 2 ~ 3 条类似 场地和地震地质环境的实测地震加速度记录和一条 拟合人工地震加速度时程曲线。 竖向加速度取水平 向的 2 / 3,具体拟合了 3 条(No. 1 ~ No. 3)50 a 年超 越概率 5% 的加速度时程曲线地震波,拟合地震波 持续时间 40. 96 s,符合要求。 同时需要对地震波加 速度峰值进行适当修正,修正后的地震波水平向及 地震危险性分析的工程时,其地震加速度代表值的 概率 水 准, 非 壅 水 建 筑 物 尾 矿 坝 的 地 震 加 速 度 [ 7] 。 按 50 a 超越概率 5% 取值 表 4ꢀ 初期坝及地基材料强度参数 3 材料 G / kPa D/ % γ/ (kN/ m ) c/ kPa ϕ/ (°) 堆石料 废石料 3. 14×105 2. 62×105 1. 63×105 2. 15×105 0. 25 0. 25 0. 15 0. 28 0. 35 21. 0 20. 5 20. 0 21. 0 18. 5 0 38. 5 30. 0 15. 0 6. 0 10 55 40 22 2 竖向的加速度峰值分别为 4. 51,3. 01 m/ s ,波形图 粉质黏土 漂卵土 4. 82×105 如图 2 ~ 图 4 所示。 黏土岩 19. 0 4 6 ꢀ ꢀ 李ꢀ 静ꢀ 张ꢀ 默:高震区某细粒尾矿坝动力时程抗震分析ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 2019 年 1 月第 1 期 表 5ꢀ 不同振次的动应力比 ρd / (2ρ′0 ) 干密度 围压 / kPa 振次/ 周次 名称 3 ρd / (t/ m ) 15 20 30 5 0 0. 372 0. 421 0. 453 0. 297 0. 325 0. 334 0. 361 0. 387 0. 391 0. 283 0. 308 0. 316 0. 327 0. 363 0. 381 0. 278 0. 286 0. 293 尾细砂 1. 68 1. 56 100 00 2 5 0 尾粉砂 100 00 2 表 6ꢀ 不同振次的动强度 尾细砂 尾粉砂 cd / kPa ϕd / (°) 振次 / 周次 cd / kPa ϕd / (°) 图 2ꢀ 地震波 NO. 1 场地波加速度时程曲线 1 2 3 5 0 0 0. 01 0. 05 0. 08 22. 5 21. 8 20. 3 0. 14 0. 16 0. 17 20. 2 19. 4 18. 9 图 5ꢀ 地震波 NO. 1 库区液化区 图 6ꢀ 地震波 NO. 2 库区液化区 图 7ꢀ 地震波 NO. 3 库区液化区 图 3ꢀ 地震波 NO. 2 场地波加速度时程曲线 全系数见表 7、表 8,最小时程安全系数如图 8 ~ 图 1 0 所示。 表 7ꢀ 尾矿坝时程稳定性计算结果 地震波 图 4ꢀ 地震波 NO. 3 场地波加速度时程曲线 安全系数名称 NO. 1 0. 725 1. 945 1. 152 NO. 2 0. 676 2. 077 1. 166 NO. 3 0. 598 2. 185 1. 153 ( 3)动三轴试验。 尾砂在不同围压条件下振动 瞬时安全系数 静安全系数 动安全系数 1 0、20、30 周次的动剪应力比见表 5,不同周期下的 动强度见表 6,8 度地震按照 30 周次取值。 4 . 3ꢀ 液化区域分析 表 8ꢀ 尾矿坝拟静力稳定性计算结果 堆积终了标高 1 620. 0 m 时,在正常运行工况+ 安全系数名称 极限平衡毕肖普法 1. 167 地震荷载条件下进行了动力有限元液化分析,液化 区如图 5 ~ 图 7 所示(深色区域为液化区)。 拟静力安全系数 5 ꢀ 结ꢀ 论 1)根据地震液化分析,尾矿库地震液化区域 4 . 4ꢀ 时程稳定性分析 ( 采用动力有限元计算尾矿坝的最小时程(s)安 主要集中在库尾浸润线以下部位,随着地震震动,孔 4 7 总第 597 期 现代矿业 2019 年 1 月第 1 期 ꢀ ꢀ (2)通过时程稳定性分析,在 50 a 5% 的地震作 用下,3 条地震波分别作用的整个过程中,尾矿坝的 最小动安全系数均大于最小安全系数 1. 15 的稳定 性的要求。 与拟静力法计算的安全系数比较,动力 时程法计算的安全系数偏小,其中 NO. 2 地震波作 用与拟静力法计算结果基本相等。 从而说明,采用 时程法计算地震稳定性,考虑了材料的动力特性,与 拟静力法计算相比,结果更准确合理,更直观反映了 整个地震过程中尾矿坝安全系数随地震加速度变化 情况。 图 8ꢀ 地震波 NO. 1 抗滑稳定性时程曲线 参ꢀ 考ꢀ 文ꢀ 献 [ [ 1]ꢀ 中华人民共和国建设部,中华人民共和国国家质量检验检疫 总局. GB 50863—2013ꢀ 尾矿设施设计规范[S]. 北京:中华计 划出版社,2013. 图 9ꢀ 地震波 NO. 2 抗滑稳定性时程曲线 2]ꢀ 杜艳强. 细粒尾矿的工程性质及尾矿坝的动力分析[ D]. 重 庆:重庆大学,2016. [ [ [ 3]ꢀ 谢定义. 应用土动力学[M]. 北京:高等教育出版社,2013. 4]ꢀ 殷宗泽. 土工原理[M] . 北京:中国水利水电出版社,2007. 5]ꢀ 陈启振. 土石坝抗震稳定性分析及震后坝坡安全性研究[D]. 天津:天津大学,2014. 图 10ꢀ 地震波 NO. 3 抗滑稳定性时程曲线 [ [ 6]ꢀ 中华人民共和国国家质量检验检疫总局,中国国家标准化管 理委员会. GB 18306—2015ꢀ 中国地震动参数区划图[S]. 北 京:中国标准出版社,2015. 隙水压力来不及消散,并会向沉积尾砂深部和堆积 子坝方向移动,液化区域将有向下部和下游方向发 展。 建议采用渠槽、池田等方法,提高尾矿沉积滩坡 度,加速尾砂排水固结,降低库区浸润线,从而缩小 库内液化范围和提高尾矿坝的整体稳定性。 7]ꢀ 中华人民共和国水利部. SL 203—97ꢀ 水工建筑物抗震设计规 范[S]. 北京:中国水利水电出版社,1997. ( 收稿日期 2018-09-11ꢀ 责任编辑ꢀ 徐志宏) ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ [ [ [ [ [ [ [ [ 8]ꢀ 中国地质调查局. 水文地质手册[ M]. 北京: 地质出版社, ( 上接第 33 页) 2012. 参ꢀ 考ꢀ 文ꢀ 献 9]ꢀ 方向清,沈智慧,吴铁卫. 基于空间分析的矿井涌水量计算方 法[J]. 煤炭与化工,2018(1):10-11. [ [ 1] ꢀ GOLDER A. Kamoa Copper Project Environmental Impact Study Update[R]. Kolwezi:Kamoa Copper Sa,2017. 10]ꢀ 钱学溥,雷小乔,许ꢀ 超,等. 矿坑涌水量的计算及其精度级 别和可信度[J]. 中国煤炭地质,2016(5):39-40. 11]ꢀ 李保珠. 会泽铅锌矿区水文地质条件及麒麟厂深部矿坑涌水 量预测[D]. 昆明:昆明理工大学,2001. 2] ꢀ GOLDER A. African Minnerals Barbados Limited-Kamoa Copper Project PFS Hydrogeology Study-2013—2013 Field Investigation Completion [R]. Kolwezi:Kamoa Copper Sa,2014. 12]ꢀ 王ꢀ 刚. 酒泉盆地地下水系统数值模拟研究[D]. 兰州:兰州 大学,2007. [ [ 3]ꢀ 紫金矿产地质勘查院. 刚果(金)加丹加省卡莫阿(KAMOA)铜 矿资源储量核实报告[R]. 厦门:紫金矿产地质勘查院,2015. 4]ꢀ 紫金矿产地质勘查院. 刚果(金) 加丹加省卡莫阿( kamoa) 铜 矿区卡库拉(kakula)矿区资源储量核实报告[R]. 厦门:紫金 矿产地质勘查院,2018. 13]ꢀ 李翕然. 我国黄金矿山下向胶结充填采矿法的技术进步[J]. 矿业研究与开发,1995(1):24-25. 14]ꢀ 房小夏. 关于凌志达煤矿探放 3 号煤采空区积水的研究[J]. 应用技术,2015(7):92-93. [ [ [ 5]ꢀ 国家技术监督局. GB / T 12719—1991ꢀ 矿区水文地质工程地 质勘探规范[S]. 北京:国家技术监督局,1991. 15]ꢀ 张志凌. 刚果(金)卡莫阿铜矿床矿坑涌水量预测及防水措施 [ J]. 现代矿业,2017(7):306-307. 6]ꢀ 虎维岳,南生辉,柴建禄. 大气降水对地下水补给的影响因素 分析[J]. 地下水,1997(4):168-169. ( 收稿日期 2018-10-21ꢀ 责任编辑ꢀ 徐志宏) 7]ꢀ 薛禹群. 地下水动力学原理[M]. 北京:地质出版社,1986. 4 8
  • 中矿传媒与您共建矿业文档分享平台下载改文章所需积分:  5
  • 现在注册会员立即赠送 10 积分


皖公网安备 34050402000107号