Series No 460
Octoberꢀ 2014
!ꢀ ꢀ "ꢀ ꢀ #ꢀ ꢀ $
20%14&(&46010''
ꢀ
ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ
ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ
METAL MINE
=
> Dilokong ?%/@ABCDEF
1
1, 2
1
1
0>?
8
9:
ꢀ
5
ꢀ
;
ꢀ
<
ꢀ
=
ꢀ
(
1. )*+,-./0123,4, 56 78 110819; 2. !~#=efgh>?, * 101500)
-
ꢀ .ꢀ R; Dilokong âCCjÕâãfÂX, ¿£F®<äåCj, stLuLC´¼½KL。 m
Dilokong âC®åCjFuLÍÎ~LCÏÐ, ¿0æ;=FLUnoQ, ÏUF、 X*uL, '<
LÙÊQgPçz, ë|aCu@@、 Cu}@、 9È9Ìè 4 Öbé, ÙÊsta 4 bé 3 \] 9 YL
3
D
UnoQgFçz¯0。 xy FLAC Oüé¯0Fw׳fmzØQgPnÞFz{, '<É
oQLUQªFòóWLUnoQ。 çznÞÃ, Cu}@9]òóLU׳rGÈfmÂ
F%ÖoQ, ©»ªa=FLUnoQ, ¡Cu@@ 50 m、 Cu}@ 26 m、 9 5 m × 5 m 9Ìè 2 m,
<nÞUJËÚCjFKLÑgÜ>Z[56。
'
/
01ꢀ #ꢀ ꢀ#Hꢀ uvwxꢀ ]u
ꢀ
ꢀ 23456ꢀ TD853ꢀ ꢀ ꢀ 789:;ꢀ Aꢀ ꢀ ꢀ 7<=6ꢀ 10011250( 2014) 1000904
Stope Structure Parameters Optimizing on Dilokong Chromium Mine in South Africa
1
1, 2
1
1
Qiu Jingping ꢀ Wang Zhen ꢀ Xing Jun ꢀ Sun Xiaogang
(
1. College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China;
2. Jchx Mining Management Co. , Ltd. , Beijing 101500, China)
Abstractꢀ Dilokong Chromium Mine in South Africa is a high grade deposit and it is the typical gently inclined thin
bodies, the roomandpillar stoping mining method was adopted. According to the mining conditions of gently inclined thin
Chrome ore body and current mining problem of Dilokong chromium mine, in order to get the reasonable structure parameters
and achieve safe & efficient mining, the paper adopted orthogonal numerical simulation experiments, which selecting four pa
rameters including room length, room width, pillar dimension and pillar spacing, and orthogonally designed nine feasible stope
3
D
structure models with four factors and three levels. Through FLAC simulation results comparing of stress status and surround
ing rock displacement of different structure parameter schemes, the paper had studied influence of different parameters to stope
stability and optimized stope structure parameter. The research result showed that room width and pillar dimension were the im
portant influence parameters of stress concentration and displacement deformation, and the reasonable stope structure parame
ters were determined: the length of room is 50 m, the width of room is 26 m, the dimension of pillar is 5 m × 5 m and the spac
ing of pillar is 2 m. The results will guide a significance to next mining of Dilokong Chromium Mine.
Keywordsꢀ Chromium mine, Gently inclined thin ore body, Numerical simulation, Stope structure parameter
1
ꢀ Dilokong @`YDE
GÌÚ`@çh 0 6 m, æ9 1 :-。 LG6 CG
Dilokong âC¿G}rê[R;ë!uFâ
lÀÁ®<äåCj, <ù¿ 9 ~ 13°, CjÅ_、
3
CCÄ, CjìrôÅÑ, ÅÂf, ¢>h[
<_、 <ùÂüç, C£¡@¿ 4 25 t/ m 。
3
00 ~ 400 m, ÌM£¦ä@¿Ó、 ÙM£¦Ú
Dilokong âCCjÆz¿ÔE¼½uL, ÔEo
¦GïñCð¿Gï_CjA®¼, Lñòu
LC´¼½KL, ¡LUuꢀع, LU@@¯_
PCjÅ_ôãh 90 m, LU?@h 20 m, Ì?@
[ 1]
¿Ó 。 Dilokong âC2ÓuLF!"¿ LG6 â
2 3
C, Cr O ãf¿ 43% ~ 47% 。 LG6 âC^ 2 #
zí, ÚT;z LG6 ÓCÈ LG6a C。
LG6 ÓC`@ 1 1 ~ 1 3 m, ]L`@ 1 12 m, ¸î
g 0 33 ~ 0 35 m `F LG6a C, ]L`@ 0 34 m,
[
2]
h 6 m, LUoLóá 。 bcCjüôK
L, DilokongâCHEOÁüôõç, éê^lLU
!
%
)
"#$ꢀ 20140609
&'(ꢀ “ ìDß” ê8&ÍtÆ12( 34: 2011BAB07B02) 。
*+,ꢀ àh]( 1975— ) , 8, á!9, :;。
·
9·
%
& 460 'ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ !ꢀ ꢀ "ꢀ ꢀ #ꢀ ꢀ $ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 2014 (& 10 '
2
2ꢀ GAu
QgP:LFj(³üoQæ 1 :
。
-
1ꢀ GAu
Table 1ꢀ Physical and mechanical
parameters of rock mass
)
o
ù
/ ( °)
¨
@
/ MPa
¨¦
@
/ MPa
j
¡ꢀ
@
o³
X / ( g/ cm3 )
gt *+
/ MPa
9 85 34 85
11 98 43 11
10 67 37 21
/
GPa
ä@ 2 86
âBC 4 26
3 24
27 72 0 25
34 47 0 23
30 56 0 22
4 43
4 71
4 52
37 8
45 21
42 88
Úꢀ
3
1ꢀ Dilokong @PQR
2
3ꢀ ꢀhi
Fig. 1ꢀ Section schematic diagram of Dilokong
chromium ore bed in South Africa
st¯0ê, ÉbéF|yÖ[=Fvwð
o。 Cu@@F|lJ,-=F-CèÁ|;
CuF}@xyIJØáHÌé*PÃtÜ
âÌFq.( }@ = é* × u/já) æ
ï; 9;ÌèIJC&9Fع¯ꢀ
noQü=, LUöSOÁyçZLUoþL
óá, >ãæJI¦¬/÷øZæ, LU¬
IÌùêg=, åeUæJLúN(
òóC&=Ñý³。 bcûyyÖ¼½ Dilokong
âCFLUnoQW, »ª=FLUno
Q, ¿C&F、 X*=ѱ&ül。
©
»
ª。 Ébéë|z]ë| 3 Ö\], æ 2 :-。
2ꢀ ꢁ¡¢
Table 2ꢀ Factor levels table
2
ꢀ ꢀ
1
Ansys OÎttg, ©Lg´Wz
Cu@@
Cu}@
9
9Ìè
D/ m
bé\]
A/ m
B / m
C / m × m
3
D
1
2
3
40
50
60
22
26
32
3 × 3
4 × 4
5 × 5
2
3
4
O FLAC N¿WLUnoQFgPz{M
[
3]
Ñ
¼
, QttGª:gLü= - ýþ
½, ÉðÌ¿=eÿ, j¿É_éF
!Ã[ 4] , ÔI׳þwx"ꢀ#¡jM%
4
ꢀ
ꢀ '<sta 9 Y¯0F L9 ( 3 ) ÙÊçz, '< 4
Öbé 3 Ö\]LUwQªFòó, 0Ý 3。
gFòó。
1ꢀ
Cj|}Å[, gFCj|}~: ¸Ô
4
3ꢀ L ( 3 ) 4K£¤¥¦
9
2
4
Table 3ꢀ L ( 3 ) Simulation experiments
9
based on orthogonal analysis
b é \ ]
w¿ä@, JÔw¿Ú, Cj<ù 10°。 ö
¯
04
A
1
1
1
2
2
2
3
3
3
B
1
2
3
1
2
3
1
2
3
C
1
2
3
2
3
1
3
1
2
D
1
2
3
3
1
2
2
3
1
÷
]
9
øJCjMaÏÐ, goQ: Cj<ù 10°, g
F@?Xvw¿ 600 m × 300 m × 200 m, Cj\
`@ 2 m, §¨CD«<_ 60 m, «Å_ 101 m, æ
2 :-。 gèꢀäå_JF%³è$@, Tg
¸¦¸F%tN¿×³~¥è[
Ⅰ
Ⅱ
Ⅲ
Ⅳ
Ⅴ
Ⅵ
Ⅶ
Ⅷ
Ⅸ
gF¸。 gFJ#~¿%ª
~。 wxgFº#~ê, ¥è&/
, ¡[gFº#\]¯_Ffmél',
~
3
ꢀ srj4K
äå¯_»¦/。
gPnÞÓÖ׳PfmzØZ[¼½z
{
。 [l1FÔb, þ2¯0Ⅴ( Cu}@ 26
m, Cu@@¿ 50 m, C 5 m × 5 m, CÌè 2
m) «LU@GHPCGHFttnÞ7O9¦
ɯ0FttnÞ349è¦z{。
1ꢀ §4¨©ª
luꢀFLU, µ5;LUFQª×îÌ
ÙMü׳6îF׳ÛlÌÙM
3
3
2ꢀ Ansys 3
Fig. 2ꢀ Ansys model diagram
·
10·
ꢀ
ꢀ ꢀ X: Dilokong #]uꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 2014 (& 10 '
jF¨@。 éê×îCF¦×³Ûl;¨¦
3 2ꢀ H4¨©ª4K
#
³
@。 ë|LUÌÙMwCN¿z{Fq7
f, TLUÌÙMwöç׳ÈCöç¦×
N¿z{LUQªÅ[F׳Üâ。
LUFQª»¦xyÌÙMFfmÂ
tj。 eLUwÂtyç, y;:cF9´
fm, LUg»ýPQ。 »¦ë|fmÂt
N¿;ôLUQªFÜâ。
^
׳ù9 3 »ꢀ, Cuu/G, [ÌÙMöS
O8kLa׳; beùkÅFü
, Ñ=ay_¦×³rGE; Cñ¦Ñ=a׳
rGi。 ɯ0ÌÙMC׳æ9 4 ¦-,
ɯ0FLUnoQë|Füé, :Ñ=FÌÙM
ë9 5 ¤_fmù9»¦Æ: Cju/G, H
EÌÙMñ׳N, L_HE¯_m/, ÿaL
UÌMFÀ·PÙMFÙ<; C¸JÔwGz]
aôªF¤_À·t¸=fmt, [áC
ÜákfmÂ。
»
%
CF׳ÉüRé, ZWèÂç。 xy9Wz{
ï: ÉbéÌÙM׳C¦×³çòó
ÖâDz]¿ B > D > A > C P C > A > D > B, ò
óÌÙM׳çFÓÖbé¿Cu}@; òóC
¦×³çFÓÖbé¿CF。
3
5ꢀ «¬j@±NH
Fig. 5ꢀ Vertical displacement of roof & floor and pillar
xy9 6 ɯ0FÂÌÙMFöç
fmLüRé, ·;fmù9»ꢀöçf
mFE>ô?flLHEG#LUÌMGHFf¹。
xy9Wz{»ï: ÉbéÌÙMCM¤_À
·tçòóFÓsâD¿ B > A > C > D, ¡Cu}
3
3ꢀ «¬®¯°§F@±®¯²§
Fig. 3ꢀ Maximum tensile stress of roof & floor
and maximum compressive stress of pillar
@
¤_À·tò󿦲。 ë9 6 »¦Æ, ¯
Ⅰ、 Ⅱ、 Ⅴ、 Ⅶ¤_fmnÞLÂ, ÑgÂÄFç
z*Þ。
0
3
4ꢀ ³hi«¬j@±§
Fig. 4ꢀ Stress value of roof & floor
and pillar of each scheme
■
— ÌÙMöç׳; — Cöç¦×³
3
6ꢀ ³hi«¬j@±NH
▲
Fig. 6ꢀ Vertical displacement of roof &
floor and pillar of each scheme
● ▲
— ÌMöçJÀ; — ÙMöçÙ<; — Cöçfm
ë9 4 »¦Æ¯0ⅤFÌÙM׳C
׳LÂ, ÑgæFW³。
¦
■
·
11·
%
& 460 'ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ !ꢀ ꢀ "ꢀ ꢀ #ꢀ ꢀ $ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 2014 (& 10 '
븿9Wz{»ïUÉbéF%Öa@, ;G
CuF}@9FLUFQªòóöç。
éê, xyɯ0QgPttnÞ»¦Æ: #z
0, æ¯0Ⅷ^l9y, CGF׳y;
´¨¦@, Ñ=a©y«¬, CGaçv
wFV@AE>; æ¯0Ⅸ, ^lCu@@}@
ë|Fyç, ÌÙMGF׳y;jF9´
@, >ãÌÙMfmyç, Ñ=a«¬; æ¯
Ⅰ、 ⅡBwF׳Å[ÂÄ, ·CuFoQ
y, ·ÛC£K2, ÿC£CPtç; ßR
l¯0Ⅶ, ¯0ⅤÑgæFW³: ÌÙMöçF
³¿ 4 33 MPa, CGFöç¦×³¿ 36 1 MPa,
Lpy;ÉMF¨@¨¦@; ÌÙMFö
( 4) gPnÞÃ: [LU@@ôªFZ[J,
¶ÌÙM׳、 ¤_fmög*FF´]¶sL
UF}@; ¶CG¦×³ög*FF´]õç9
F; bcë¶sÌÙMCF׳、 fmF
ù@¼½LUst, xyR¶Cu}@、 õç9
XLUQª]»½F。
¯
9
uꢀ vꢀ 7ꢀ 8
¨
[
1] ꢀ ¢G, &H, $IJ. R; Dilokong âCLC=ÑmaÍ
ÎKp[ J] . 0GC&, 2012( 11) : 4648.
0
Zhou Wenlue, Lian Minjie, Ma Yimin. Technological evaluation on
the overall flow of mining production in Dilokong Chromium Ore of
South Africa[ J] . Metal Mine, 2012( 11) : 4648.
×
[ 2] ꢀ Lꢀ ), MêÀ. ®<äåCjâCuLq7ÍÎNÒ'<
[
R] . $O&: G}rê$O&C&'<Òg´PQ, 2013.
çfm¿ 1 14 cm, LUFfmÂtÂ。 »ª
Xing Jun, Sun Guoquan. Key Mining Technology and Equipment Re
search of Slowly Inclined Thin Orebody of Chrome Ore[ R] . Maans
han: Sinosteel Maanshan Institute of Mining Research Co. , Ltd. ,
¯
0Ⅴ¿öWFLUnoQ, ¡Cu@@¿ 50 m、
Cu}@¿ 26 m、 9¿ 5 m × 5 m 9Ìè
¿
2 m。
2013.
[ 3] ꢀ RST. >#®<äåCjLUnoQWL/À\
'<[ D] . GRçü, 2012.
4
ꢀ sꢀ t
(
1) C&FuLÍÎ~Å, ÎaQ
Ning Yulin. Research on Optimization of Stope Parameters of Deep
Gently Inclined Thin Ore Body and Mining Subsidence Characteris
tics[ D] . Changsha: Central South University, 2012.
4] ꢀ äU], VWX, Y¢Y, é. Z¹[C¹CjLUnoQ
W[ J] . 0GC&, 2012( 5) : 14.
z{g, gF@?Xvw¿ 600 m × 300
m × 200 m, ;GCj<ù 10°, \]`@ 2 m。
(
2) ë|aòóuꢀLUQªF 4 Ybé,
ÉYbéltt6©(zë|a 3 Ö\], ©st
a 4 bé 3 \] 9 YLUnoQFtt¯0。
3) xy 9 Ytt¯0gnÞF׳fm
F9Wz{ïUaDE Dilokong âCuLFöÈL
[
Yang Qingping, Teng Bingjuan, Hu Wenda, et al. Stope structure pa
rameters optimization of west orebody in Chambishi Copper Mine
(
[
J] . Metal Mine, 2012( 5) : 14.
(
6537ꢀ Rbc)
UnoQ: Cu@@ 50 m, Cu}@ 26 m, 9
5 m × 5 m, 9Ìè¿ 2 m。
·
12·
/pdf/swf/201410/2014_1024_201231_973.swf