新城金矿V#矿体-680m中段踏步式回采研究-矿业114网 
首页 >> 文献频道 >> 矿业论文 >> 正文
新城金矿V#矿体-680m中段踏步式回采研究
2014-10-24
回采顺序的合理选择有助于地下金属矿山控制地压活动、改善回采条件以及提高经济效 益。新城金矿 V#矿体采用上向水平分层充填法回采,采场垂直矿体走向布置并按照“隔一采一”顺序分为一 步回采和二步回采,这 种回采顺序导致二步采场两侧均为充填体支撑,顶板条件较差。本研究以新城金矿V#矿体-6 80m中段为研究对 象,基于原有的“隔一采一”回采顺序提出“踏步式回采”方案,通过FLAC3D软件模拟分 析、比较2种方案对采场岩体 稳定性的影响。数值模拟结果表明,无论采用“隔一采一”还是“踏步式回采”方案,在两侧为 充填体支撑的情况下,中 间矿体的回采条件均较差,但相比...
Series No 460 Octoberꢀ 2014 !ꢀ ꢀ "ꢀ ꢀ #ꢀ ꢀ $ 20%14&(&46010'' ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ METAL MINE 56% V# %+ - 680 m 789:;</23 4 1 2 1 1 567 - ./ ꢀ 0 ꢀ 1 ꢀ 234 ꢀ ( 1. )*+,-./0123,4, 56 78 110819; 2. $)d!#=efgh>?ij!#, $) kl 261438) - ꢀ .ꢀ KLâDF=œëEgFlIJ0GC&§¨I¦¬/、 34KL~¦€žX()*+。 HI0C # V CjL—¸_\]z“ꢀ¡´KL, LUäåCjÅ_ع©øJ“ KôLô” âDz¿ôõKLÈDõKL, X # YKLâD>ãDõLUAºL¿ꢀ¡j•–, ÌM~ÂW。 %'<¦HI0C V Cj - 680 m GÚ¿'< 3 D i, $lÔgF“ KôLô” KLâDžŸ“ NõꢁKL” ¯0, xy FLAC OgPz{、  2 Y¯0LUj Qª­Fòó。 QgPnމÃ, ؝L—“ KôLô” —]“ NõꢁKL” ¯0, [Aº¿ꢀ¡j•–FZ[J, G ÌCjFKL~LÂW, ·RßS, “ NõꢁKL” [§¨ÌM„、 TUÑ=çvwV­E¯OWl“ KôLô” ¯ 0。 %'<’ސXYC&FCjKLstg%ÖFZ[56。 01ꢀ !#ꢀ m]noꢀ pq]qꢀ rstm]ꢀ uvwxꢀ FLAC3D / ꢀ ꢀ 23456ꢀ TD853 34ꢀ ꢀ 789:;ꢀ Aꢀ ꢀ 7<=6ꢀ 10011250( 2014) 1000504 Stepped Excavation Sequence for the -680 m Section of V# Ore Body in Xincheng Gold Mine 1 2 1 1 Liu Xige ꢀ Sun Xing ꢀ Zhu Wancheng ꢀ Wang Qingyuan ( 1. Co2llege of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China; . Xincheng Gold Mine of Shandong Gold Mining Co. , Ltd. , Yantai 261438, China) Abstractꢀ The selection of rational excavation sequence may is favor for the underground metal mines to control the geo # stress, to improve excavating conditions and to raise economic benefits. The V ore body is excavated by the upward horizontal slice stopingfilling method at Xincheng Gold Mine, and the layout of the stopes is perpendicular to the strike of the ore body. According to the “ taking one every the other one” excavation sequence, the stopes are excavated by onestep mining and two step mining. This kind of mining sequence results in the second stage of excavating supported by the filling body on both sides # and their roofs are not so stable. Taking the - 680 m section of V ore body at Xincheng Gold Mine as the objective, based on the original excavating sequence of “ taking one every the other one” , the “ stepped excavating” scheme has been put forward. 3 D By means of FLAC numerical simulation, the stability of stope under these two schemes are analyzed and compared. The nu merical results indicate that, whether using excavating sequence of “ taking one every the other one” or the “ stepped excava ting” , the mining condition of orebody at middle under support on both sides is poor. In contrast, however, the sequence of “ stepped excavating” is better than the sequence of “ taking one every the other one” in terms of controlling of the stope de formation and avoiding from a wide range of plastic zone. The research has an important referential significance for similar mines in the design of ore body excavation. Keywordsꢀ Gold mine, Excavation sequence, Taking one every the other one, Stepped excavation sequence, Numerical simulation, FLAC3D ꢀ ꢀ [0GC&IJuLyaG, W™KLâDl ¨I¦¬/、 34KL~¦€žX()*+Lk U;Ú%ÖFN—[ 1] 。 \]]á,LbcE#^L CÑ!"_`ab, cdC&›œer>#uL, I ¦fÐNŸ。 [cghJ'<CjFKLâD½i ¿%Ö, éêX]IJC&uL'<GFj9f Ð。 § ¢£[ 2] xyIJ0GC&ËÚuLË̛ ! % "#$ꢀ 20140611 &'(ꢀ ê8MO&ü$012( 34: 51222401、 51374049、 51304037) , !"#&üÍÎ'<%912( 34: 113019A) , GHX:$%&' ( )*12( 34: N110201001、 N120101001) , Gê— R;<='<tÆ12( 34: 2012DFG71060 / CS06 - L01) , !"#:;9$0 Ð ( 34: 20110042110035) 。 > ) *+,ꢀ ?@A( 1989— ) , 8, :;'<=。 wx)*ꢀ BC’( 1974— ) , 8, !9, :;'<=>-。 · 5· % & 460 'ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ !ꢀ ꢀ "ꢀ ꢀ #ꢀ ꢀ $ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 2014 (& 10 ' ÈüË̛¦€üéKLâDFI¦fk¼½d¯ 2ꢀ €‚ƒ„ꢀ4K 0 z{Â, ¿Ø̛ƒ„LCFחž±aœl ; ¢£[ 37] z]mÉÖIJC&FüéÔEK L¯0naz{; ¢£[ 8] ØٛzÚÛV´ G 2 YKL¯0¼½aÂ'<。 ¦¸'<’ÞL üéC&EWëEKL¯0ž±a»Œl•©Z 2 1ꢀ ‚†‡ˆ • ‰•HI0C - 680 m GÚCj~ŠÎQ 3 D tt FLAC g‹。 g‹[‘ŠyaGnaôªa@ # F‹™, ^lHI0C V CjÂ`ç, ö`#z» ¿ Y 130 m, Œ»¦Tg‹[Cuع¯_|ôÚ¼ ½'<, æ9 2 :-, g‹Žj¿ 150 m × 160 m × 20 m。  XYMag%ÖFowp。 2ÓqlIJC& KLâDF'<ÓÖrG[ÔEKLâDWë¯O, [ äåz“KLâD¯OF'<Âs。 # % '<¦HI0C V Cj - 680 m GÚ¿'< 3 D [ 910]  i, ZF FLAC O gPttz{, [‡g “ KôLô” ¯0F$·¸žŸ“ NõꢀKL” ¯0, ¦ ¿YU34CjKL~F*Þ。 1 ꢀ oyzn # HI0C V Cj - 680 m GÚL—¸_\]z ꢁ¡´KL, ÔE«CjÅ_、 CuäåCjÅ_ “ 3 D 3 2ꢀ FLAC „ꢀ‚† ع, vÖÔE^ 1 ÖôõLUP 1 ÖDõLU‘ , ôõKLLU? 8 m, DõKLLU? 7 m, zÚ X@ 50 m。 vz“KL 3 3 m, bG¼½ꢁ¡, HÌ  5 m, OG_¸¸„KLJôz“, ö÷ËJ 6 m Ì w, ꢁ¡nÌ。 x 1 z“KL^ 3 2 m × 3 1 m Fy z{¬„’, KL¾|¼½LUÙM¥M, ÙMî — Fig. 2ꢀ FLAC D calculation model 3 ’ ë| 4 ÖLU¼½'<, gPKLâDP9 1 â Ré。 ^l%GÚVMÙM¸#„Fòóg , :¦pwx%GÚxôz“KL¾|¥MFLU 4 1 ´ ÙM, T;N¿ꢁ¡jFô#zkœ。 ·], ¸ô GÚFLUÙM‘¦wx, ©[gPttGŽj| , cVMÙM𸿸ôGÚCjKLGFꢁ¡ j。 g‹ø’Oj“Æz’52 815Ör”, 32 118 ֕9。 å~ 12 mm F}~, @¿ 300 mm × 300 mm, î  — € 1∶ 4 F‚ƒ¼½ꢁ¡, „Ù`@ 600 mm。 ‡ gF“ KôLô” ¯0][ôõKLÞÌM© ꢁ ¡eÌG༽DõKL, cKL¯0Fꢀi]ô 2  2ꢀ ‰Š‹ŒF„ꢀu€ õLKL¾|GDõKL[Aº”#^ꢁ¡j•– % '<L— Mohr - Coulomb –@¼½, ;³üg F~J¼½, ÌM^Âçvw†ÎCj‘’, “” ÂW。 3¼GFKL¯0ø“ Nõꢀ” ¼½, ¡ô ‹ ¿ ­ σ - σ3 11 - sin + sin - 2c 槡 1 + sin 1 - sin 1 ( σ1 > σc 2 õKLˆ_¸LÞ 25 m k¡ꢁ¡eÌ, OGuìD õKL。 DõKLôåKLUÌM©ꢁ¡eÌ, öG KLÔLôõKL‡ˆ#zFCj。 2 YüéKL 1 ) , f = { 1 - 3 σ - σt ( σ1 ≤ 2 σc ) ¯ 0æ9 1 :-。 ( 1) ꢀ ¿ › G, σ1 , σ z]¿xôÈx—Ó׳; σc , σ z] 3 t ˜‚¨¦–@Ȩ™–@; c,  z]¿oš³Èo œù。 l•ÏÐMa~, g‹z¿ 3 Y­X‹, GÚKL¾|Fꢁ¡jP%GÚvz“KL¾| ¸ GFꢁ¡j, ¸zÚFVMÙM¦€pKLFCj。 QgPL—Fj³üoQ݉ 1。 gPtt™~: ’ž€ÙM´_fmhŸ, g‹¸#¿O³hŸ, \]I׳øj³èꢁ, öç Ó׳¿]½Cuع¯_F\]׳, M%׳G 3 1ꢀ 2 {|}~Yhi lxDÓ׳。 %ttg‹:—׳~æJ[ 11] : Fig. 1ꢀ Two different mining methods · 6· ꢀ ꢀ ꢀ yz{X: ij!# V# #H - 680 m |}rstm]`aꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 2014 (& 10 '  1ꢀ GAŽu€ [nÂz{。 [“ KôLô” ¯0Gë|KLU 14 õP 17 õêF¤åfmUPV­EN¿oJ, éê ë|NõꢁKL¯0G 11 õP 20 õ 2 YM[Pð 。 Table 1ꢀ Mechanical parameters of the rock mass jÁ gt GPa y gt / GPa o› œù / ( °) ¨™ –@ / MPa ¡ ꢀ @ oš³  jX] ( kg/ m3 ) / / MPa / 3  1ꢀ H4K Cꢀ j 2 550 14 93 16 7 0 91 10 74 1 25 0 47 46 33 49 8 33 10 3 34 10 c 4 YM[~JF¤å¯_„æ9 3 :-。 VMÙM 2 550 ꢀ ¡j 2 020 40 0 4 0 19 z{†‡, [“ KôLô” ¯0GôõKLe¥¿D õKLê( 9 3( a) ) , DõKLLUFÙ#JÀ„ Úæ, »Y 42 mm, KL¼½U 17 õê( 9 3 b) ) , „è§U 47 mm; ߥnNõꢁKL¯0G LUFJÀ„gÂçF34, ÔDõLU[KL ꢀ ꢀ ꢀ ꢀ ꢀ σ = 2. 15 + 0. 052 2H, = 0. 73 + 0. 024 6H, ( 2) h, max ; σ ( 3) ( 4) h, min ( σ = - 0. 74 + 0. 032H, v ; G, σh, max , σ , σ z]¿öç、 öŠ\]Ó׳ h, min v ¨  [ ¿( 9 3( c) ) €LÞÌMê( 9 3( d) ) F„z] Ô¯0Š, ¿ 28 mm È 46 mm。 NõꢁKL¯0 §¨LU„¯OÂÔL¯0gaÂæF3¼。 ÈäåÓ׳, MPa; H ¿¢>, m。 3 ꢀ €‚ƒjsr4K [ 2 YüéâDFKL¯0Gz]ë|£‹M 3 3ꢀ 2 {Yhi‘’H“” Fig. 3ꢀ Comparison of vertical displacement in two different mining methods 3  2ꢀ •–[4K 6¦²。 4 YM[~JFV­EzØFZ[æ9 4, L 4ꢀ s t ꢀ U€ꢀ¡jÓÖñ©y™ª«¬。 Ñ=c‡iFÔ bÓÖ[lHI0C\]I׳Âç, ôõKL¾| G, DõKLFLUL­UÂçòó, bcKL› ( 1) ‰• 2 ¯0[V­EvwȆî`³F , ؝]“ KôLô” ¯0—]“ NõꢁKL” ¯0, [AºL¿ꢀ¡j•–FZ[J, ĠˆCjFK L~SÂW, bc[KLX#zCjFyaGg ´Öè–LUÌMFµá。 œ _¸#z“®¼, JOz“Fꢀ¡j›œÑ= V­«¬。 QgPnމÃ, “ KôLô” KL¯ [DõKLê, ÌMkF†ÎCjÑ=ÂçvwV E, RßS, “ NõꢁKL” ½¯¿°¬, »¦» µKLMNO¸¯ì÷üÑ=yçvwFV­E, Zßp[±êÌo, ¡V­Eè§`îðӐ; ½KL。 bc, “ NõꢁKL” ¯0FÏÐMa5 0 ( 2) QgPttnމÃ, 3¼GF“ Nõꢁ KL” âD[§¨LU¸#pLCjJÀ„¯O WlÔLF“ KôLô” ¯0。 Ô¯0T>ãDõK LLU¸#„’ÂçvwF†ÎCj( AºL]ô õKL¾|„’Fꢀ¡j) , L—“ NõꢁKL” G» ­ © ¼ · 7· % & 460 'ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ !ꢀ ꢀ "ꢀ ꢀ #ꢀ ꢀ $ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 2014 (& 10 ' 3 4ꢀ 2 {Yhi•–[“” Fig. 4ꢀ Comparison of plastic zone in two different mining methods of Mining & Safety Engineering, 2012, 29( 2) : 261264. 6] ꢀ ËÌQ, ÍÎ6. ŠÏÐBCQE - 270 m \]=œKLâDF g´”z{[ J] . ÑǜMüÒüý, 2001, 23( 3) : 15. ¦ ¶ŠDõLUÌMFJÀt, ëß·ÛCjbñ™ [ ߊVF‚K­。 uꢀ vꢀ 7ꢀ 8 Song Weidong, Du Cuifeng. FEM modeling on reasonable sequence of extract ion of the eastern district in Xiaoguanzhuang Iron Mine [ [ 1] ꢀ ^¸¹. 0GCÄIJuL[ M] . 2 ò. Çð: ñ0M(Ÿòó, [ J] . Journal of Hebei Institute of Technology, 2001, 23( 3) : 15. 2 011. [ 7] ꢀ ô¼4, ?ÓÔ, ½ꢀ ¾, é. 0GCÕõ$uL£³üœ  Xie Shijun. Metal Deposit Underground Mining [ M] . 2nd edition. Beijing: Metallurgical Industry Press, 2011. PÏÖ[ J] . £³üPMaüý, 2010, 29( 10) , 19451953. Li Xibing, Liu Zhixiang, Peng Kang, et al. Theory and practice of 2] ꢀ º»=, "ꢀ Š, ô¼4. Ø̛ƒ„LCF£³üW™ [ J] . rock mechanics related to the exploitation of undersea metal mine GRM(çüüý, 1999, 30( 5) : 441444. [ J] . Chinese Journal of Rock Mechanics and Engineering, 2010, 29 10) : 19451953. Gu Desheng, Deng Jian, Li Xibing. Rock mechanics optimization of nonpillar continuous mining [ J] . Journal of Central South Universi ty of Technology, 1999, 30( 5) : 441444. 3] ꢀ ½ꢀ ¾, ô¼4, ½¿À, é. õÙJÁÂꢀz“ꢁ¡´uLG CQª­z{ [ J] . GRçüüý: MO&üò, 2011, 42 ( [ [ 8] ꢀ Wang P, Li H, Li Y, et al. Stability analysis of backfilling in subsi ding area and optimization of the stoping sequence [ J] . Journal of Rock Mechanics and Geotechnical Engineering, 2013, 5 ( 6) : 478 [ 4 84. ( 11) : 34523458. 9] ꢀ ?ꢀ ×, ØÙÚ. FLAC Ԝ、 ÏÛPחÜR[ M] . Çð: V& Peng Kang, Li Xibing, Peng Shuquan, et al. Orerock stability of ÊxŸòó, 2005. frame stope hierarchical level filling mining method in seabed mining Liu Bo, Han Yanhui. Theory, Examples and Application Guides of FLAC[ M] . Beijing: China Communications Press, 2005. [ J] . Journal of Central South University: Science and Technology, 011, 42 ( 11) : 34523458. 2 3D [ [ 10] ꢀ Itasca Consulting Group Inc. FLAC ( Fast Lagrangian Analysis of [ [ 4] ꢀ qꢀ Ã, BC’, ÄÅ, é. HI0CGÚÌٛÔEKLâ Continua in 3 Dimensions) Version 3. 1 User's Guide[ M] . USA: Itasca Consulting Group Inc, 2006. DW™[ J] . 0GC&, 2013( 9) : 4449. Guan Kai, Zhu Wancheng, Zhang Hongxun, et al. Optimization of panel mining sequence for the middlesection top pillar of Xincheng Gold Mine[ J] . Metal Mine, 2013( 9) : 4449. 11] ꢀ çÝ. HI0CⅤ4Cj - 580 m LUuL¯ꢀW™'< [ J] . &¹ŠÞ, 2012, 38( 19) : 9495. Zhang Dalei. Study on the optimization of - 580 m level stope min ing model at No. V ore body in Xincheng Gold Mine [ J] . Shanxi Architecture, 2012, 38( 19) : 9495. 5] ꢀ ƞ”, ÇÈ,, Éʾ, é. ÔEKÁC›LUn‘oQQ W™[ J] . LCP“”Maüý, 2012, 29( 2) : 261264. Luo Zhouquan, Guan Jialin, Feng Fukang, et al. Stope structural pa rameters of panel isolation pillar numerical optimization[ J] . Journal ( 6537ꢀ Rbc) · 8·
  • 中矿传媒与您共建矿业文档分享平台下载改文章所需积分:  5
  • 现在注册会员立即赠送 10 积分


皖公网安备 34050402000107号