“S”型裂隙岩体锚固效果及应力场分布规律-矿业114网 
首页 >> 文献频道 >> 矿业论文 >> 正文
“S”型裂隙岩体锚固效果及应力场分布规律
2014-02-10
针对裂隙岩体中的“S”型节理裂隙进行机理分析并对该节理的锚注效果进行了数值模拟研究,通过数 值模拟软件FLAC3D建立单根、双根2种锚固方式下的裂隙岩体模型,并利用对FLAC3D软件不同加锚方式下裂隙岩体 的力学性能进行模拟,对比分析不同锚注方式下的锚固效果和主要破坏方式。研究结果表明:加锚可有效提高裂隙 岩体的强度、弹模等力学参数,改善岩体的整体力学性质,不同的锚注方式对裂隙岩体的锚注效果差别明显。对“S” 型裂隙岩体加以锚杆锚固,其应力集中现象可以得到缓解,拉应力峰值也有所下降,在裂隙端部加锚杆比在裂隙中部 加锚杆的锚固效果要好,特别是在峰值强度和弹模方面有较大差别,且在裂隙端部...
Series No 451 Januaryꢀ 2014 !ꢀ ꢀ "ꢀ ꢀ #ꢀ ꢀ $ 20%14&(4&511'' ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ METAL MINE “ S” “”•%–—˜K™šPvt3w›œ 1 , 2 1, 2 3 1, 2 @cz sZt ꢀ @uv ꢀ wxy ꢀ ( 1 )*+,-.#/01.2, )* 3$, 063009; 2 )*4#/56789’“¡¢:;<, ) * 3$ 063009; 2 3$ǟW#/˜™š›œ, )* 3$ 063009) - ꢀ .ꢀ mnLMHI`·“ S” œíKLM‰Š[K¾±ŽnoíK·ꢀ¼jډŠ‹€‚56, v_ 3D 3D € ‚àˆ FLAC Sûm、 qm 2 ‘ꢀð¹Y!·LMHIœ, Žs’n FLAC àˆZ°ªꢀ¹Y!LMHI ÿ&þ‰Š‚, n¿¾±Z°ꢀ¼¹Y!·ꢀðjÚ¿¢âU¸¹Y。 56QÚøç: ªꢀžj‘0LM HI·+S、 J1ÿ&‚, l8HI·NIÿ&†, Z°·ꢀ¼¹YnLMHI·ꢀ¼jÚTZçG。 n“ S” LMHIªñꢀ¡ꢀð, õ»ÿó`dižñÐÑeJ, §»ÿπª¡!Î, ½LM#Lªꢀ¡¿½LM`L ªꢀ¡·ꢀðjÚâÖ, ˆZà½Ï€+S¿J¹Q2ÍTZ, /½LM#LíHªꢀ¡½Ï€+S_ød2 Ö, nLM_ӄ¸2Ö·þ˜Ê’。 o56›Únosœ·LMHIꢀ𑍋KyŽn。 · œ / 01ꢀ klmnꢀ XYZ[ꢀ “ S” \]^\Iꢀ X_¬S + ꢀ ꢀ 23456ꢀ TD353  6ꢀ ꢀ ꢀ 789:;ꢀ Aꢀ ꢀ ꢀ 7<=6ꢀ 10011250( 2014) 0104604 Effects of “ S” type fractured rock anchoring and the distribution rule of stress field 1 , 2 1, 2 3 1, 2 Kang Zhiqiang ꢀ Zhang Xueyan ꢀ Zhao Jingmin ꢀ Zhang Shuqing ( 1 College of Mining Engineering, Hebei United University, Tangshan 063009, China; 2  Hebei Province Key Laboratory of Mining Development and Safety Technique, Tangshan 063009, China; 3  Tangshan Majiagou Mining Co , Ltd , Tangshan 063009, China) www.ky114.cn Abstractꢀ Aimed at the mechanism analysis of the “ S” type joints in the fractured rock mass, a numerical simulation of 3 D the anchoring effect of joint is made Through numerical simulation software FLAC , a fractured rock mass model under single and double root is built to simulate the mechanical properties of the fractured rock mass under different anchor grouting method and compare their anchoring effect and the main failure mode The results showed that: anchoring can effectively improve the mechanical parameters of the fractured rock mass, such as its strength and elastic modulus, and increase the overall mechanical properties of rock mass Different ways of anchor injection has different anchoring effect on fractured rock mass After “ S” type fractured rock mass is anchored, its stress concentration phenomenon can be alleviated, and the peak of tensile stress also falls The bolt anchoring effect is better to install the bolt at the end of fracture than in central crack, especially in the peak strength and elastic modulus with bigger difference, and it presents better effect at the end of fracture anchor bolt after peak strength, and has good inhibition on later extension of crack The study provides a theoretical basis for anchoring this type of fractured rock Keywordsꢀ Numerical simulation, Anchor reinforcement, Fractured rock mass with the type of “ S” , Anchoring effect ꢀ ꢀ !{—ÍŽHIꢁR¬–øç, HIꢁR·¤[ U¸ÍfàÄXHI{L·íK、 LM1àùQ Qp^NAU¸Bý·。 c‡, ½¬mꢁR`, a JŽ、 ¦È+S1, Wþ@©+HIQ“·NI [\。 *ž, ꢀð34åöš»’XH«ꢁR·¤ Á¹ï, Ž/×ЋGÑ·aÙjh[ 47] 。 ꢀð34 ÊÇޑnúH#£S、 Ô՞î、 aُj·ªð 34ùÞ, þ´¾•–H«I·+S•þ, ÷£H« #··+S¿#Îþÿ, vXYÍEíºꢁRäå, ~ “ b^’ꢀ¡ªðŸqrLMHI·Æ”U¸[ 13] 。 ꢀ ÊǢⷪð¨ËË͎^’, àcǕníK HIçG·ªðʒ, ZVþ@‘0íKQ“Q· ¡ ! % "#$ꢀ 20131122 &'(ꢀ !"#$%&'()*( +,: 51174071) , -./#$%&'()*( +,: E2012209004) , -.„oÍ&ÄO'()*( +,: LDPY007) 。 ) *+,ꢀ Á\+( 1974— ) , ;, >?, <=, @?56ABC。 · 46· ꢀ ꢀ ꢀ Íb`[: “ S” \]^\IX[¬Sa²ôòi÷bcꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 2014 (& 1 ' ±ªªÜ‹ꢀRS»·úS。 L 2ꢀ YZTU ° Table 2ꢀ Bolt parameters Û56v_SZ°ꢁð‡ˆ!·“ S” œLM 3 D - F­ -F­ ÏQÿ / MPa ¦§ +S / MPa ¡I Ã! / mm HIœ, Žs’ FLAC àˆnœ‰Š€‚ Ÿ ꢀ S J 6 S [ 810] , ÐcZ°ªꢁ¹Y!·ꢁðjÚ¿¢âU ¹Y, ŽnZ°ªꢁ¹Y!“ S” œLMHI·Âà -[»ÿw¾îgGªñ¾±, Çꢁ¡ªðꢀR· pÓ»¼‘%&·KyŽn。 / m / GPa ¾ ¸ ¿ ± / MPa 17 5 2  4ꢀ ®¯*° 0 200 0 2 0 25 20 1 œ`ð^’ Mohr - Coulomb —¸ëìŸÅU HI·U¸, Ž/ðZ«¬]ꢀ£( Z«¬¨“) 。 1 ꢀ “ S” Ž§¨žpŽ“”• 1  1ꢀ ©ªpŽ 2ꢀ “ S” Ž§¨žtuwx~4]ij , Njnœ{L·U¸”~ŒÔƧ ‚_R ÛŁ‚nià,“ S” œLM·ê¹I|ˆ, | ’ ˆ·²³Ç 20 m × 20 m × 20 m。 ½œ·²L^ 1úí᪺, ¬dûü¦È, úk—˜½ 0 3 ðnœñÞÁjg, õ¼ÇÇ1 000。 ‚ QÚꢁꢀ 3 ~ ꢀ 6 ¡¢。 vꢀ 3 `Åc: ½Ëª1ú mm/ min。 œ«¾Ç1 720Áûß, 2 449í8, œ éꢀ 1、 ꢀ 2 ¡¢。 í᪺±, LM{L}^NA§ꢀU¸, `·íH 5 3 ¸ ¢ © Í 1 46 × 10 MPa, ²!|ÿíHÅù vXBýU , }^¯ÈLM·²!É#„¸, u_ñõ`Þ#Ç „¸, 3_”›¨jU¸Ç¢, °±Ê§U¸· oU¸Y。 vꢀ 4 `žñÅc: ½Ëª1úíá ªº±, ÊàLM{L}^NA§ꢀU¸, `·íH 5 3 Í 1 0 × 10 MPa。 vꢀ 5 `žñÅc: ÊàLM{ 5 L}^NA§ꢀU¸, `·íH3ÍÇ 0 96 × 10 MPa。 vꢀ 6 `žñÅc: ÊàLM{L}^NA§ 5 ꢀ U¸, `·íH3ÍÇ 1 44 × 10 MPa。 v_n¿ 3 1ꢀ pŽ Fig 1ꢀ Model žñNd, |ˆªꢁñ_§»ÿ3Íπð¡! www.ky114.cn Î, ñ#Lqꢁ·Ï€!Î3ÇçG, +S!ÎÙ 4 25% ; õÅǽ#LíHªûmꢁ¡, õπ!Î SÇ 31 51% ; 3_ǽ`LíHªqmꢁ¡, õ π¡!Î, 2!ÎZçG, VÇ 0 01% 。 ´—W ñÅc, ˪ꢁ¡þ@øLMãA·»ÿó`di ÐÑL¾eJ, ôç˪·ꢁ¡žñnL:·ËAw ÑÞ\·þ˜Ê’。 3 + ž 3 2ꢀ «“ S” Ž§¨“i¬3 Fig 2ꢀ With “ S” type fracture section figure 1  2ꢀ Ü­BC ( ( 1) œž、 _¿Á、 Â|â^’#Ä|⇈。 2) !L|â×ð\Âù³íá。 1  3ꢀ pŽTU Z°H¿ꢁ¡·UKÿ&‚ꢁø 1 ¿ø 2。 Q“ûß Cable ‚ꢁ¡, ꢁ¡½‚_R`šÅ 3 3ꢀ ±YZtuHvwx4] ’ Fig 3ꢀ No bolt stress distribution in vertical direction ÊàAy”äå。 3 ꢀ “ S” Ž§¨ž{|wx~4]ij L 1ꢀ pŽžx¡TU ꢀ 7 ~ 10 , ꢀ à1úÂ꺱 n-[»ÿw Table 1ꢀ Rock mass mechanics parameters of the model ¡ Ê·jgꢀ。 ꢀ 7 G¢: ½Âûÿʒ!, “ S” IR ¨j Ž / GPa ¦§ +S / MPa {÷ +µ / ( °) LM·`LãA»ÿó` 3ͧ»ÿÙÑ , 8 44 œ ÏQÿ ĵ  Ž ,˜¿ / MPa / ( °) 0 4 / GPa  52 × 10 MPa, /cd§»ÿãÌ 45°µ·di, †XN 7 4 52 0 25 0 40 34 Aû0Q¨jU¸。 ꢀ 8 G¢: ½LM·`LãA» · 47· % & 451 'ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ !ꢀ ꢀ "ꢀ ꢀ #ꢀ ꢀ $ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 2014 (& 1 ' 3 4ꢀ x²°Ð³YZtuwx4] 3 7ꢀ ±YZ{|Hvwx4] Fig 4ꢀ The vertical stress distribution of upper single anchor Fig 7ꢀ No anchor horizontal stress distribution 3 5ꢀ x²°Å³YZtuwx4] 3 8ꢀ x²°Ð³YZ{|wx4] Fig 5ꢀ The vertical stress distribution of upper double anchor Fig 8ꢀ The horizontal stress distribution of upper single anchor 3 6ꢀ 2°Å³YZtuwx4] www.ky114.cn Fig 6ꢀ The vertical stress distribution of central double anchor 3 9ꢀ x²°Å³YZ{|wx4] Fig 9ꢀ Horizontal stress distribution of upper double anchor 4 ÿó`di, 3ͧ»ÿÇ 5 4 × 10 MPa。 ꢀ 9 G 4 ¢ : §»ÿ3ÍÏ€Ç 5 0 × 10 MPa。 ꢀ 10 ¡¢§ 4 » ÿ3ÍÏ€Ç 7 05 × 10 MPa。 v_n¿žñN d, |ˆËªꢀ¡ñ_, §»ÿ·3Íπð¡! Î, õ`ñ|ˆ#L˪qꢀ¡_, §»ÿ3Íπ Î3ÇçG, ¾¿®ꢀ¡·tu!!Î 40 76% ; õÅǽ|ˆ#L˪ûꢀ¡, §»ÿ3Íπ!Î ! 3 6 02% ; 3_ǽ|ˆ`L˪qꢀ¡, §»ÿπ 3 10ꢀ 2°Å³YZ{|wx4] ! ¡  ¡ Î 16 47% 。 ćžꢁ, n“ S” œLMHIªñꢀ ꢀð, »ÿó`dižñÐÑeJ, §»ÿπª ¡!Î, /½#L˪ꢀ¡¾¿2X½`L˪ꢀ jÚÍÇGÑ。 2ÄXꢀ¡·æSñ~+S1c Fig 10ꢀ Horizontal stress distribution of central double anchor ( 2) Z°·ªꢀ¹Yõꢀðjڏ2çG·T Z。 }^, ½LM#Lªꢀ¡¿½LM`Lªꢀ¡· b·&', ½ 45°·¹³Ž$›½§»ÿ, ôçLM n|ˆ·+S&'2Í, ûÌ˪ꢀ¡›½|Í。 ꢀ ðjÚâÖ, ˆZà½Ï€+S¿J¹Q2Í TZ, /½LM#LíHªꢀ¡½Ï€+S_ød2 4 ꢀ ˆꢀ ‰ Ö nLM_ӄ¸2Ö·þ˜Ê’ õÅ ½LM , ; , ( 1) LM·›½š2ÍRSEÎl‹HA¿s Häå·ÿ&ˆ, Xªꢀžjl8q‘\ù,  j‘0LMHI·+S、 Jñ~l8äåU¸_Ó — #ªꢀ¿½Þ#ªꢀ·jÚâÖ, ®yvwL+ S、 π+SWàJ~_ÓødŸÅ, —#ªꢀš â+XÞ#ªꢀ。 qôçVÞ#ªꢀHIøLMñ Þ#ÇwL$Uh, ‰X&'HANI·ÿ&ø · ÿ&ød。 ´ · 48· ꢀ ꢀ ꢀ Íb`[: “ S” \]^\IX[¬Sa²ôòi÷bcꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 2014 (& 1 ' [ 6] ꢀ Wong R H C, Chau K T. Crack coalescence in a rocklike material containing two cracks[ J]  International Journal of Rock Mechanics and Mining Sciences, 1998, 35( 2) : 147164. d。 Tꢀ Šꢀ 7ꢀ 8 [ 7] ꢀ Õꢀ Ï, €¾J  LMHI¼­ªðjÚ·&'cb¾±[ J] . [ [ 1] ꢀ Á\+, M[, OÎ>, 1. GpLMHIꢀ¼[K~€ ( WGp, 2009( 6) : 1417 ‚ 56[ J] . iGÔÕ, 2012( 11) : 2730. Yan Feng, Jiang Fuxing Analysis of the factors influencing the grou ting reinforcement effects of fractured rockmass [ J] . Metal Mine, Kang Zhiqiang, Guo Liwen, Zhang Yanbo, et al Study on numerical simulation and bolt grouting mechanism of mine fracture rock masses 2 009( 6) : 1417. [ J]  Safety in Coal Mines, 2012( 11) : 2730. 8] ꢀ Á\+, ë¦A, OÎ>  'X FLAC D ·íKHI™šꢀ¼ª 3 [ [ 2] ꢀ E¥Ï, ÐÑ°, -ꢀ ó, 1. LMHIꢀðrL·€‚5 ð€‚[ J] . (WGp, 2013( 4) : 6164. 6 [ J] . HAÿ&½ꢁR&#, 2007( S1) : 34463451. Kang Zhiqiang, Jia Yubo, Zhang Yanbo Numerical simulation re search of bolt grouting reinforcement to jointed rock based on Wang Zhongchang, Luan Maotian, Yang Qing, et al, Study on numer ical simulation of reinforcement on crack prevention of jointed rock mass[ J] . Chinese Journal of Rock Mechanics and Engineering, 2007 3 D FLAC [ J] . Metal Mine, 2013( 4) : 6164 9] ꢀ Òꢀ Ó, ÔS!, OPJ, 1  'X FLAC D ·íKHI^£DÕ 3 ( S1) : 34463451. ۓœ·]N~»’[ J] . HAÿ&½ꢁR&#, 2008( 3) : [ [ 3] ꢀ Zhang P, He R L, Li N, et al Uniaxial compressive strength analysis of fractured media containing intermittent fractures at different strain rates[ J] . Chinese Journal of Rock Mechanics and Engineering, 5 72579. Lan Hang, Yao Jianguo, Zhang Huaxing, et al Development ang ap plication of constitutive model of jointed rock mass damage due to 2 007, 26( 1) : 27352742. 3 D mining based on FLAC [ J] . Chinese Journal of Rock Mechanics and Engineering, 2008( 3) : 572579. 4] ꢀ HZa, =PÄ  E{ʒ!HIꢀðþ56½§½¸Á [ J] . (WGp, 2006( 3) : 510. [ 10] ꢀ ìÄâ, E"Ö  íKHI|c(‰U¸·€‚56 Hong Haichun, Xu Weiya Review and prospect of anchorage proper ties of reinforced rockmass under Earthquake[ J] . Metal Mine, 2006 [ J]  N(W: GpL¾, 2006( 2) : 2831 ChenYajun, Wang Jiachen Study on numerical simulation of pro gressive failure of jointed rock slope[ J]  Nonferrous Metals: Mine Section, 2006( 2) : 2831. ( 3) : 510. [ 5] ꢀ Bobet A, Einstein H H. Fracture coalescence in rocktype materials under uniaxial and biaxial compression[ J]  International Journal of Rock Mechanics and Mining Sciences, 1998, 35( 7) : 863888. ( fg+hꢀ abc) www.ky114.cn · 49·
  • 中矿传媒与您共建矿业文档分享平台下载改文章所需积分:  5
  • 现在注册会员立即赠送 10 积分


皖公网安备 34050402000107号